Action potential timing determines dendritic calcium during striatal up-states.

نویسندگان

  • Jason N D Kerr
  • Dietmar Plenz
چکیده

Up-states represent a key feature of synaptic integration in cortex and striatum that involves activation of many synaptic inputs. In the striatum, the sparse firing and tight control of action potential timing is in contrast to the large intracellular membrane potential depolarizations observed during the up-state. One hallmark of striatal spiny projection neurons is the delay to action potential generation in both up-states and suprathreshold depolarization by somatic current injection. By studying somatic and dendritic intracellular calcium ([Ca2+]i) transients during spontaneous up-states in cortex-striatum-substantia nigra organotypic cultures, we show that the delay between up-state onset and action potential generation determines dendritic peak [Ca2+]i. Peak [Ca2+]i from single action potentials reached maximum values when action potentials were close to up-state onset and sharply decayed to near subthreshold up-state [Ca2+] levels as a function of time (tau = 47 +/- 26 msec for tertiary dendrite). Similarly, a precisely timed action potential elicited during subthreshold up-states through somatic current injection established that the delay between up-state onset and action potential generation is the critical variable that controls peak [Ca2+]i. Blocking NMDA channels internally with high intracellular Mg2+ ([Mg2+]i) (10 mm) abolished the dependency of peak [Ca2+]i on action potential timing during spontaneous up-states. Finally, high [Mg2+]i specifically blocked [Ca2+]i transients that resulted from local NMDA application in conjunction with backpropagating action potentials. We conclude that precisely timed, single action potentials during striatal up-states control peak dendritic calcium levels. We suggest that this mechanism might play an important role in synaptic plasticity of the corticostriatal pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dendritic calcium encodes striatal neuron output during up-states.

Striatal spiny projection neurons control basal ganglia outputs via action potential bursts conveyed to the globus pallidus and substantia nigra. Accordingly, burst activity in these neurons contributes importantly to basal ganglia function and dysfunction. These bursts are driven by multiple corticostriatal inputs that depolarize spiny projection neurons from their resting potential of approxi...

متن کامل

Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity.

Single action potentials (APs) backpropagate into the higher-order dendrites of striatal spiny projection neurons during cortically driven "up" states. The timing of these backpropagating APs relative to the arriving corticostriatal excitatory inputs determines changes in dendritic calcium concentration. The question arises to whether this spike-timing relative to cortical excitatory inputs can...

متن کامل

Title : Dynamic modulation of spike - timing dependent calcium influx during cortico - striatal

24 The striatum of the basal ganglia demonstrates distinctive upstate and downstate 25 membrane potential oscillations during slow wave sleep and under anesthetic. The upstates 26 generate calcium transients in the dendrites and the amplitude of these calcium transients 27 depends strongly on the timing of the action potential (AP) within the upstate. Calcium is 28 essential for synaptic plasti...

متن کامل

A model-based prediction of the calcium responses in the striatal synaptic spines depending on the timing of cortical and dopaminergic inputs and post-synaptic spikes

The dopamine-dependent plasticity of the cortico-striatal synapses is considered as the cellular mechanism crucial for reinforcement learning. The dopaminergic inputs and the calcium responses affect the synaptic plasticity by way of the signaling cascades within the synaptic spines. The calcium concentration within synaptic spines, however, is dependent on multiple factors including the calciu...

متن کامل

Backpropagation of physiological spike trains in neocortical pyramidal neurons: implications for temporal coding in dendrites.

In vivo neocortical neurons fire apparently random trains of action potentials in response to sensory stimuli. Does this randomness represent a signal or noise around a mean firing rate? Here we use the timing of action potential trains recorded in vivo to explore the dendritic consequences of physiological patterns of action potential firing in neocortical pyramidal neurons in vitro. We find t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 24 4  شماره 

صفحات  -

تاریخ انتشار 2004